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Administrative announces

• Next week 3rd of December at the lecture time

– Replacement test paper (Pót ZH)

– Email will be sent through Neptun

• No quizzes on Tuesday in the workclass. 

– It will be done later.

– The Wednesday and Monday group will have quizzed.

• Consultation will be held in the usual consultation time and place

• Programming test is coming (18th of December)

– Please practice!
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Static samples vs Data signal flow 

• Though human can 
recognize 
– Single letters
– Single sounds
– Single tunes
– Single pictures
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• But in real life we 
handle
– Texts 
– Speech
– Music
– Movies

Can feed forward neural networks (perceptrons, 
conv. nets) solve these problems?

DATA MEMORY

Story

(temporal analysis 
of sequential data)

AlexNet could recognize 1000s of images.
ResNet could reach better then human performance.



Memory
• Our feed-forward nets had so far

– Program memory (for the weights)

– Registers 

• For store temporally due to implementation and not matematical
resasons

• Registers were not part of the networks

• After each inferences the net was reset
– All registers were deleted

– No information remained in the net after processing an input vector

– Therefore the order of a test sequence made no difference
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Recurrent networks (RNN)

11/26/2018 6

Feedback loop

Jürgen lives in Berlin.

He speeks ……………..

• Unlike traditional neural 
networks, the output of the RNN 
depends on the previous inputs 

– State 

• RNN contains feedback 

• Theoretically:

– Directed graph with cyclic loops

• From now, time has a role in 
execution

– Time steps, delays



Steps towards vectorized data and parameters

• Weights
(multiple
arrows)
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Steps towards vectorized data and parameters

• Weights
(multiple
arrows)
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Steps towards vectorized data and parameters

• Weights
(multiple
arrows) 

replaced
with
vectors
(single
arrows)
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Steps towards vectorized data and parameters

• Single arrows
indicate all 
interconnections 
between layers 

• wij matrix 
matematically



Introducing feedback loop
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ℎ 1 = 𝑓 ℎ 0 , 𝑥 1 = 𝐖𝒉𝑐(1)

ℎ()

𝑦()

𝑥()

ℎ 0 = 0

𝑥(1) =

𝑥1(1).
.
.

𝑥𝑘(1)

ℎ(0) =

ℎ1(0).
.
.

ℎ𝑙(0)
𝑐 1 =

ℎ1(0).
.

ℎ𝑙 0

𝑥1 1
.
.

𝑥𝑘(0)

𝑤: 𝑙 × 𝑘 + 𝑙 𝑠𝑖𝑧𝑒𝑑 𝑤𝑒𝑖𝑔ℎ𝑡 𝑚𝑎𝑡𝑟𝑖𝑥

concatenation

f() can be defined
as a more complex
function not only a 
matrix vector
multiplication.



Activation function in feedback loop

• Activation function of the
hidden layers is 
typically hyperbolic
tangent

• It avoids large positive 
feedback
– Keeps the output between

-1 and +1
– Avoids exploding the loop 

calculation
– Gain should be smaller 

than 1 in the loop!
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Positive feedback in a loop:
A produces more of B which 
in turn produces more of A.
It leeds to increase beyond 
any limit.

A                   B

x2

x2



Timing of the RNN
• Discrete time steps are used
• Input vector sequence to apply
• Signals are calculated in a node, when all inputs 

exist
• State machine
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input

x(1)

x(2)

x(3)

x(4)

…

Time Input State output

t=1 x(1) ℎ 1 = 𝑓 ℎ 0 , 𝑥 1 𝑦 1 = 𝑔 ℎ 1

t=2 x(2) ℎ 2 = 𝑓 ℎ 1 , 𝑥 2 𝑦 2 = 𝑔 ℎ 2

t=3 x(3) ℎ 3 = 𝑓 ℎ 2 , 𝑥 3 𝑦 3 = 𝑔 ℎ 3

t=4 x(4) ℎ 4 = 𝑓 ℎ 3 , 𝑥 4 𝑦 4 = 𝑔 ℎ 4

ℎ()

𝑦()

𝑥()

ℎ 0 = 0How to calculate back propagation?

.   .   .
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Unrolling
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x(1)

h(1)

y(1)

x(2)

h(2)

y(2)

x(3)

h(3)

y(3)

x(4)

h(4)

y(4)

h(0)

x(i)

ℎ 𝑖 = 𝑓 ℎ 𝑖 − 1 , 𝑥 𝑖

𝑦 i = 𝑔 ℎ 𝑖

.  .  .



Unrolling

• Unrolling generates an acyclic 
directed graph from the original 
cyclic directed graph structure

• It generates a final impulse 
response (FIR) filter from the 
original infinite impulse 
response (IIR) filter

• Dynamic behavior 

11/26/2018 15

…

FIR filters response 
to any finite length 
input with a final 
response.

IIR filters may response to 
any finite length input 
with a infinite (usually 
decaying) response, due 
to their internal loop.



Weight matrix sharing
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x(1)

h(1)

y(1)

x(2)

h(2)

y(2)

x(3)

h(3)

y(3)

x(4)

h(4)

y(4)

h(0)

x(i)
𝐖𝒉

ℎ 𝑖 = 𝑓 ℎ 𝑖 − 1 , 𝑥 𝑖 =

=𝐖𝒉 𝑐(1)

𝑦 i = 𝑔 ℎ 𝑖 = 𝐖𝒚ℎ 𝑖

𝐖𝒚

.  .  .

RNN re-uses the same weight
matrix in every unrolled steps.
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Simple RNN Training Example: Predicting the next letter

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture10.pdf

One-hot 
encoding
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Simple RNN Training Example: Predicting the next letter

Hidden layer 
weights are 
initialized with 
random values
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Simple RNN Training Example: Predicting the next letter

Output layer 
weights are 
initialized with 
random values
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Simple RNN Training Example: Predicting the next letter
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Simple RNN Training Example: Predicting the next letter
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Simple RNN Training Example: Predicting the next letter
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Simple RNN Training Example: Predicting the next letter

Backpropagation 
can be started 
using negative log 
likelihood cost 
function



Back propagation through time

• Assuming that the length of the 
input vector sequence is limited

• It became a feedforward neural net
• Possible to apply 

back propagation
• We need multiple vector sequences 

to train!

x(1) x(2) x(3) x(4)
x(1) x(2) x(3) x(4)

y(1) y(2) y(3) y(4)

y(1) y(2) y(3) y(4)

.  .  .

.  .  .

x(n)

y(n)



Backpropagation through time



Truncated Backpropagation through time



Truncated Backpropagation through time

Carry hidden states
forward in time forever,
but only backpropagate
for some smaller
number of steps! 



Truncated Backpropagation through time



Image captioning example 
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Image captioning example
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Image captioning example
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Image captioning example
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Alexnet: scored 5 best guesses



Image captioning example
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Image captioning example
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Image captioning example
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straw



Image captioning example
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straw



Image captioning example
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straw hat



Image captioning example
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straw hat



Image captioning example
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straw hat
end



Image captioning example
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straw hat
end
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Image captioning Example: Results
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Image captioning: Failure cases



Problem

• What happens if the input sequence is too 
long?
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Vanishing gradient!



Vanishing Gradient Problem
• In case of long

input vector
sequencies, the old 
vectors has a 
strongly fading
effect in inference
phase

• In training phase, 
the stacked
gradient functions
will be very small
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Practical problem of long term dependences

• Consider a network 
which predicts the next 
word in a text
– If the information needed 

to predict is close, it can 
be successfully trained

– If required information is 
far, the training will be 
difficult
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in

German

Berlin He speeksJürgen lives
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RNN Gradient flow
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RNN Gradient flow
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RNN Gradient flow
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RNN Gradient flow

Introduction of 
Long Short Term 
Memory (LSTM)



Long Short Term Memory (LSTM)

• Was originally introduced  Hochreiter & 
Schmidhuber (1997)

• Idea:
– To be able to learn long term dependences

– Collects data when the input is considered to be 
relevant

– Keeps it as long as it considers to be important

– Technique: 

• Handle the state as a memory with minor 
modifications

– No matrix multiplication

– No tanh

– Apply memory handling kind signals

» data in, data out, write, enable

11/26/2018 50http://colah.github.io/posts/2015-08-Understanding-LSTMs/



Derivation of LSTM

• Repeating module in 
Normal RNN 

– concatenates the input 
and the state

– A neural network with 
tanh output and repeats 
the result 

• LSTM

– Uses the state as a 
memory

– Uses 4 neural nets to 
control the memory

• Forget, Input, W, Output
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Components of LSTM  I
• All wires represents vector

– Vector transfer
– Vector concatenation
– Vector copy

• Neural nets with (yellow boxes)
– Multi-layer NN with tanh activation 

function used for update value 
calculation

– Multi-layer NN with logistic
activation function (sigmoid)
used for value selection (kind of 
addressing)

• Pointwise operation (pink circles)

– Pointwise multifaction 
– Pointwise addition
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Input

Output



Components of LSTM  II
• State of the LSTM

– This is the actual
memory, 

– It can pass the previous
values with or without
update

– Represented by the 
upper black line

– Indicated with Ct

• Old content can be 
removed value-by-value

• New content can be 
added
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How LSTM works?

• Step 1
– Combines input and 

previous output 
(concatenation)

– Selects which values to 
forget 
• Sort of addressing

• Done by the 
“Forget Gate” 

• Neural net with sigmoid 
output
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Updating state memory  (Example)• Input: “James”

• Forget Neural network figures out:
– Analyzes the concatenated vector 

– Name, Subject of a sentence, Male 

• Selects which values to forget and how much 

– Position and weight

• Task:
– Update gender of the subject (forget the old 

value)

– Gender might be represented with a variable

• c1: value proportional with the probability 
that the subject is a male

• c2: represents weather

– Calculate the forget factor of the gender 
memories

• 0 completely get rid of it 

• 1 keep the previous value

• 0  ..  1  partial forget

• Adressing and suppressing!!! 55

𝐶𝑡−1 =
−0.5
0.2
⋮

𝑓𝑡 =
0.1
1
⋮

James

𝐶𝑡−1
′ =

−0.05
0.2
⋮

c1: subject’s
gender

f1: forget 
factor of c1

c1  value 
after partial 
forget

Not to 
forget c2

𝐶𝑡−1
′



How LSTM works?

• Step 2
– Calculation of the state 

update 
• Done by the 

“Cell Network”

• Not yet the new value, only 
the update value

• Neural Net with tanh

– Selection of the state values 
to be updates (Addressing)
• Done by the “Input Gate” 

• Neural Net with sigmoid

–
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Updating state memory  (Example)• Input: “James”

• Input Gate figures out:
– Analyze the concatenated vector

– Select which values to update  (ENABLE!!!)

– Calculate the update weights

• Cell Network calculates:
– The update values

• Task:
– Update gender of the subject (calculate the update 

value)

– Gender might be represented with a variable

• c1: value proportional with the probability 
that the gender is male

• c2: represents weather

– Calculate the update factor of the gender 
memories 

• 0 not to update

• 1 fully update

• 0  ..  1  partial update

• ADRESSING!!!11/26/2018 57

ሚ𝐶𝑡 =
0.9

−0.75
⋮

𝑖𝑡 =
0.8
0
⋮

James

ሚ𝐶𝑡
′ =

0.72
0
⋮

c1: subject 
gender estimate 
value 

f1: update 
factor of 
c1

c1  update 
value

Not to 
modify c2

ሚ𝐶𝑡
′



How LSTM works?

• Step 3
– Calculation of the state 

update

• The old state 

– With the forgotten 
values in the vector

• And the state update 

– With update vector

• Are added up
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𝐶𝑡 = 𝐶𝑡−1
′ + ሚ𝐶𝑡

′ =
−0.05
0.2
⋮

+ 
0.72
0
⋮

= 
0.67
0.2
⋮

c1: subject gender’s
estimate value update 

c2: (weather) unchaged

ሚ𝐶𝑡
′

𝐶𝑡−1
′



How LSTM works?

• Step 4
– Apply activation function to

the output 
• Squeeze the values 

between -1 and +1

• Done by tanh activation 
function

– Selection of the new output 
values (Addressing)
• Done by the “Output Gate” 

• Not all the state value is 
released in each step

• Output Gate decides which
values are relevant in this step
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Output vector can be sparse
• Output gate 

might enables 

– All values  
of Ct

– Fraction of 
Ct (sparse)

– None of Ct

• Ct can be 
sparse
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𝑜𝑡 =

0.01
0.85
0.75
0.1
0.2
0.8
0.1
0.1
0.02
0.9
0.8

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ 𝐶𝑡 =

0.002
0.83
−0.73
−0.01
0.2
0.64
0.02
0.03
−0.02
0.72
0.63

𝑡𝑎𝑛ℎ 𝐶𝑡 =

0.2
0.98
−0.97
−0.1
0.98
0.8
0.2
0.3

−0.99
0.8
0.7

Enabling factor: 
Enabled values 
are red

Output vector:
Enabled values are red
Disabled values (gray) 
will appear on the 
output, but with 
reduced values

Values are 
bounded



LSTM network

• General form of an 
LSTM network
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Unrolling LSTM network
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Gradient calculation in LSTM 
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Input

Forget

Output

Cell Net

Reformulating equations

∗

∗

∗

∗

∗

∗
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Gradient calculation in LSTM 

∗

∗

∗
∗

∗

∗



• Though we multiply the memory content with a smaller than 1 number
• And the W matrix is part of the memory update
• But it still preserves the content for longer time
• As it comes from the name: It is a elongated time short term memory
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Gradient calculation in LSTM 

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗



Achevements with LSTM networks
• Record results in natural language text compression

• Unsegmented connected handwriting recognition

• Natural speech recognition

• Smart voice assistants
– Google Translate

– Amazon Alexa

– Microsoft Cortana

– Apple Quicktype

• 95.1% recognition accuracy on the Switchboard corpus, incorporating a 
vocabulary of 165,000 words

– Continuous spontaneous English native speech
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• Introduced by Gers & 
Schmidhuber (2000)

• All the three gates receives 
input from the previous 
state and the input

• Since output can be sparse 
this version has more 
information for gating 

– addressing and weighting
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Variants of LSTM I  : Peephole connections 



• Input and forget gates 
has practically the 
same role

• Why not to join them?

11/26/2018 68

Variants of LSTM II  : Joined forget and input
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Gated Recurrent Unit (GRU)

• Another variant of LSTM

• Introduced by  Kyunghyun Cho 
(2014)

• There is no separate State and 
Output

• Only three neural nets

• At GRU the output will not be  
sparse (not gated)

• Similar performance in music 
and speech signal modelling and

• Learns faster for smaller data set
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How GRU works?

• Concatenate ht-1 and xt

• Calculate the Input Gate

• Suppress the values to be 
forgotten in ht-1 
(get sparse memory vector)

• Calculate the joint Forgot and 
output Gates

• Gate ht-1

• Calculate function of the  Cell 
Network

• Gate ෨ℎ𝑡−1

• Calculate the new output (ht)

𝑟𝑡 = 𝜎 𝑊𝑟 ℎ𝑡−1, 𝑥𝑡

𝑧𝑡 = 𝜎 𝑊𝑧 ℎ𝑡−1, 𝑥𝑡
෨ℎ𝑡 = 𝑡𝑎𝑛ℎ 𝑊𝑐 𝑟𝑡 ∗ ℎ𝑡−1, 𝑥𝑡

ℎ𝑡 = 1 − 𝑧𝑡 ∗ ℎ𝑡−1+ 𝑧𝑡 ∗ ෨ℎ𝑡


