
Neural Networks

(P-ITEEA-0011)

Recurrent Neural networks,
LSDM

Akos Zarandy

Lecture 9

November 12, 2018

Administrative announces

• Next week 3rd of December at the lecture time

– Replacement test paper (Pót ZH)

– Email will be sent through Neptun

• No quizzes on Tuesday in the workclass.

– It will be done later.

– The Wednesday and Monday group will have quizzed.

• Consultation will be held in the usual consultation time and place

• Programming test is coming (18th of December)

– Please practice!

11/26/2018 2

Contents

• How to handle sequential signals with Neural Networks?

• Recurrent Networks
• Training

• Examples

• Vanishing gradient problem

• Long Short Term Memory (LSTM)
• LSTM versions

11/26/2018. 3

Static samples vs Data signal flow

• Though human can
recognize
– Single letters
– Single sounds
– Single tunes
– Single pictures

11/26/2018 4

• But in real life we
handle
– Texts
– Speech
– Music
– Movies

Can feed forward neural networks (perceptrons,
conv. nets) solve these problems?

DATA MEMORY

Story

(temporal analysis
of sequential data)

AlexNet could recognize 1000s of images.
ResNet could reach better then human performance.

Memory
• Our feed-forward nets had so far

– Program memory (for the weights)

– Registers

• For store temporally due to implementation and not matematical
resasons

• Registers were not part of the networks

• After each inferences the net was reset
– All registers were deleted

– No information remained in the net after processing an input vector

– Therefore the order of a test sequence made no difference

11/26/2018 5

Recurrent networks (RNN)

11/26/2018 6

Feedback loop

Jürgen lives in Berlin.

He speeks ……………..

• Unlike traditional neural
networks, the output of the RNN
depends on the previous inputs

– State

• RNN contains feedback

• Theoretically:

– Directed graph with cyclic loops

• From now, time has a role in
execution

– Time steps, delays

Steps towards vectorized data and parameters

• Weights
(multiple
arrows)

11/26/2018 7

11/26/2018 8

Steps towards vectorized data and parameters

• Weights
(multiple
arrows)

11/26/2018 9

Steps towards vectorized data and parameters

• Weights
(multiple
arrows)

replaced
with
vectors
(single
arrows)

11/26/2018 10

Steps towards vectorized data and parameters

• Single arrows
indicate all
interconnections
between layers

• wij matrix
matematically

Introducing feedback loop

11

ℎ 1 = 𝑓 ℎ 0 , 𝑥 1 = 𝐖𝒉𝑐(1)

ℎ()

𝑦()

𝑥()

ℎ 0 = 0

𝑥(1) =

𝑥1(1).
.
.

𝑥𝑘(1)

ℎ(0) =

ℎ1(0).
.
.

ℎ𝑙(0)
𝑐 1 =

ℎ1(0).
.

ℎ𝑙 0

𝑥1 1
.
.

𝑥𝑘(0)

𝑤: 𝑙 × 𝑘 + 𝑙 𝑠𝑖𝑧𝑒𝑑 𝑤𝑒𝑖𝑔ℎ𝑡 𝑚𝑎𝑡𝑟𝑖𝑥

concatenation

f() can be defined
as a more complex
function not only a
matrix vector
multiplication.

Activation function in feedback loop

• Activation function of the
hidden layers is
typically hyperbolic
tangent

• It avoids large positive
feedback
– Keeps the output between

-1 and +1
– Avoids exploding the loop

calculation
– Gain should be smaller

than 1 in the loop!

11/26/2018 12

Positive feedback in a loop:
A produces more of B which
in turn produces more of A.
It leeds to increase beyond
any limit.

A B

x2

x2

Timing of the RNN
• Discrete time steps are used
• Input vector sequence to apply
• Signals are calculated in a node, when all inputs

exist
• State machine

13

input

x(1)

x(2)

x(3)

x(4)

…

Time Input State output

t=1 x(1) ℎ 1 = 𝑓 ℎ 0 , 𝑥 1 𝑦 1 = 𝑔 ℎ 1

t=2 x(2) ℎ 2 = 𝑓 ℎ 1 , 𝑥 2 𝑦 2 = 𝑔 ℎ 2

t=3 x(3) ℎ 3 = 𝑓 ℎ 2 , 𝑥 3 𝑦 3 = 𝑔 ℎ 3

t=4 x(4) ℎ 4 = 𝑓 ℎ 3 , 𝑥 4 𝑦 4 = 𝑔 ℎ 4

ℎ()

𝑦()

𝑥()

ℎ 0 = 0How to calculate back propagation?

. . .

11/26/2018

Unrolling

11/26/2018 14

x(1)

h(1)

y(1)

x(2)

h(2)

y(2)

x(3)

h(3)

y(3)

x(4)

h(4)

y(4)

h(0)

x(i)

ℎ 𝑖 = 𝑓 ℎ 𝑖 − 1 , 𝑥 𝑖

𝑦 i = 𝑔 ℎ 𝑖

. . .

Unrolling

• Unrolling generates an acyclic
directed graph from the original
cyclic directed graph structure

• It generates a final impulse
response (FIR) filter from the
original infinite impulse
response (IIR) filter

• Dynamic behavior

11/26/2018 15

…

FIR filters response
to any finite length
input with a final
response.

IIR filters may response to
any finite length input
with a infinite (usually
decaying) response, due
to their internal loop.

Weight matrix sharing

11/26/2018 16

x(1)

h(1)

y(1)

x(2)

h(2)

y(2)

x(3)

h(3)

y(3)

x(4)

h(4)

y(4)

h(0)

x(i)
𝐖𝒉

ℎ 𝑖 = 𝑓 ℎ 𝑖 − 1 , 𝑥 𝑖 =

=𝐖𝒉 𝑐(1)

𝑦 i = 𝑔 ℎ 𝑖 = 𝐖𝒚ℎ 𝑖

𝐖𝒚

. . .

RNN re-uses the same weight
matrix in every unrolled steps.

11/26/2018 17

Simple RNN Training Example: Predicting the next letter

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture10.pdf

One-hot
encoding

11/26/2018 18

Simple RNN Training Example: Predicting the next letter

Hidden layer
weights are
initialized with
random values

11/26/2018 19

Simple RNN Training Example: Predicting the next letter

Output layer
weights are
initialized with
random values

11/26/2018 20

Simple RNN Training Example: Predicting the next letter

11/26/2018 21

Simple RNN Training Example: Predicting the next letter

11/26/2018 22

Simple RNN Training Example: Predicting the next letter

11/26/2018 23

Simple RNN Training Example: Predicting the next letter

Backpropagation
can be started
using negative log
likelihood cost
function

Back propagation through time

• Assuming that the length of the
input vector sequence is limited

• It became a feedforward neural net
• Possible to apply

back propagation
• We need multiple vector sequences

to train!

x(1) x(2) x(3) x(4)
x(1) x(2) x(3) x(4)

y(1) y(2) y(3) y(4)

y(1) y(2) y(3) y(4)

. . .

. . .

x(n)

y(n)

Backpropagation through time

Truncated Backpropagation through time

Truncated Backpropagation through time

Carry hidden states
forward in time forever,
but only backpropagate
for some smaller
number of steps!

Truncated Backpropagation through time

Image captioning example

11/26/2018 29

Image captioning example

11/26/2018 30

Image captioning example

11/26/2018 31

Image captioning example

11/26/2018 32
Alexnet: scored 5 best guesses

Image captioning example

11/26/2018 33

Image captioning example

11/26/2018 34

Image captioning example

11/26/2018 35

straw

Image captioning example

11/26/2018 36

straw

Image captioning example

11/26/2018 37

straw hat

Image captioning example

11/26/2018 38

straw hat

Image captioning example

11/26/2018 39

straw hat
end

Image captioning example

11/26/2018 40

straw hat
end

11/26/2018 41

Image captioning Example: Results

11/26/2018 42

Image captioning: Failure cases

Problem

• What happens if the input sequence is too
long?

11/26/2018 43

Vanishing gradient!

Vanishing Gradient Problem
• In case of long

input vector
sequencies, the old
vectors has a
strongly fading
effect in inference
phase

• In training phase,
the stacked
gradient functions
will be very small

11/26/2018 44

Practical problem of long term dependences

• Consider a network
which predicts the next
word in a text
– If the information needed

to predict is close, it can
be successfully trained

– If required information is
far, the training will be
difficult

11/26/2018 45

in

German

Berlin He speeksJürgen lives

11/26/2018 46

RNN Gradient flow

11/26/2018 47

RNN Gradient flow

11/26/2018 48

RNN Gradient flow

11/26/2018 49

RNN Gradient flow

Introduction of
Long Short Term
Memory (LSTM)

Long Short Term Memory (LSTM)

• Was originally introduced Hochreiter &
Schmidhuber (1997)

• Idea:
– To be able to learn long term dependences

– Collects data when the input is considered to be
relevant

– Keeps it as long as it considers to be important

– Technique:

• Handle the state as a memory with minor
modifications

– No matrix multiplication

– No tanh

– Apply memory handling kind signals

» data in, data out, write, enable

11/26/2018 50http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Derivation of LSTM

• Repeating module in
Normal RNN

– concatenates the input
and the state

– A neural network with
tanh output and repeats
the result

• LSTM

– Uses the state as a
memory

– Uses 4 neural nets to
control the memory

• Forget, Input, W, Output

11/26/2018 51

Components of LSTM I
• All wires represents vector

– Vector transfer
– Vector concatenation
– Vector copy

• Neural nets with (yellow boxes)
– Multi-layer NN with tanh activation

function used for update value
calculation

– Multi-layer NN with logistic
activation function (sigmoid)
used for value selection (kind of
addressing)

• Pointwise operation (pink circles)

– Pointwise multifaction
– Pointwise addition

11/26/2018 52

Input

Output

Components of LSTM II
• State of the LSTM

– This is the actual
memory,

– It can pass the previous
values with or without
update

– Represented by the
upper black line

– Indicated with Ct

• Old content can be
removed value-by-value

• New content can be
added

11/26/2018 53

How LSTM works?

• Step 1
– Combines input and

previous output
(concatenation)

– Selects which values to
forget
• Sort of addressing

• Done by the
“Forget Gate”

• Neural net with sigmoid
output

11/26/2018 54

Updating state memory (Example)• Input: “James”

• Forget Neural network figures out:
– Analyzes the concatenated vector

– Name, Subject of a sentence, Male

• Selects which values to forget and how much

– Position and weight

• Task:
– Update gender of the subject (forget the old

value)

– Gender might be represented with a variable

• c1: value proportional with the probability
that the subject is a male

• c2: represents weather

– Calculate the forget factor of the gender
memories

• 0 completely get rid of it

• 1 keep the previous value

• 0 .. 1 partial forget

• Adressing and suppressing!!! 55

𝐶𝑡−1 =
−0.5
0.2
⋮

𝑓𝑡 =
0.1
1
⋮

James

𝐶𝑡−1
′ =

−0.05
0.2
⋮

c1: subject’s
gender

f1: forget
factor of c1

c1 value
after partial
forget

Not to
forget c2

𝐶𝑡−1
′

How LSTM works?

• Step 2
– Calculation of the state

update
• Done by the

“Cell Network”

• Not yet the new value, only
the update value

• Neural Net with tanh

– Selection of the state values
to be updates (Addressing)
• Done by the “Input Gate”

• Neural Net with sigmoid

–

11/26/2018 56

Updating state memory (Example)• Input: “James”

• Input Gate figures out:
– Analyze the concatenated vector

– Select which values to update (ENABLE!!!)

– Calculate the update weights

• Cell Network calculates:
– The update values

• Task:
– Update gender of the subject (calculate the update

value)

– Gender might be represented with a variable

• c1: value proportional with the probability
that the gender is male

• c2: represents weather

– Calculate the update factor of the gender
memories

• 0 not to update

• 1 fully update

• 0 .. 1 partial update

• ADRESSING!!!11/26/2018 57

ሚ𝐶𝑡 =
0.9

−0.75
⋮

𝑖𝑡 =
0.8
0
⋮

James

ሚ𝐶𝑡
′ =

0.72
0
⋮

c1: subject
gender estimate
value

f1: update
factor of
c1

c1 update
value

Not to
modify c2

ሚ𝐶𝑡
′

How LSTM works?

• Step 3
– Calculation of the state

update

• The old state

– With the forgotten
values in the vector

• And the state update

– With update vector

• Are added up

11/26/2018 58

𝐶𝑡 = 𝐶𝑡−1
′ + ሚ𝐶𝑡

′ =
−0.05
0.2
⋮

+
0.72
0
⋮

=
0.67
0.2
⋮

c1: subject gender’s
estimate value update

c2: (weather) unchaged

ሚ𝐶𝑡
′

𝐶𝑡−1
′

How LSTM works?

• Step 4
– Apply activation function to

the output
• Squeeze the values

between -1 and +1

• Done by tanh activation
function

– Selection of the new output
values (Addressing)
• Done by the “Output Gate”

• Not all the state value is
released in each step

• Output Gate decides which
values are relevant in this step

11/26/2018 59

Output vector can be sparse
• Output gate

might enables

– All values
of Ct

– Fraction of
Ct (sparse)

– None of Ct

• Ct can be
sparse

11/26/2018

𝑜𝑡 =

0.01
0.85
0.75
0.1
0.2
0.8
0.1
0.1
0.02
0.9
0.8

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ 𝐶𝑡 =

0.002
0.83
−0.73
−0.01
0.2
0.64
0.02
0.03
−0.02
0.72
0.63

𝑡𝑎𝑛ℎ 𝐶𝑡 =

0.2
0.98
−0.97
−0.1
0.98
0.8
0.2
0.3

−0.99
0.8
0.7

Enabling factor:
Enabled values
are red

Output vector:
Enabled values are red
Disabled values (gray)
will appear on the
output, but with
reduced values

Values are
bounded

LSTM network

• General form of an
LSTM network

11/26/2018 61

Unrolling LSTM network

11/26/2018 62

Gradient calculation in LSTM

11/26/2018 63

Input

Forget

Output

Cell Net

Reformulating equations

∗

∗

∗

∗

∗

∗

11/26/2018 64

Gradient calculation in LSTM

∗

∗

∗
∗

∗

∗

• Though we multiply the memory content with a smaller than 1 number
• And the W matrix is part of the memory update
• But it still preserves the content for longer time
• As it comes from the name: It is a elongated time short term memory

11/26/2018 65

Gradient calculation in LSTM

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

Achevements with LSTM networks
• Record results in natural language text compression

• Unsegmented connected handwriting recognition

• Natural speech recognition

• Smart voice assistants
– Google Translate

– Amazon Alexa

– Microsoft Cortana

– Apple Quicktype

• 95.1% recognition accuracy on the Switchboard corpus, incorporating a
vocabulary of 165,000 words

– Continuous spontaneous English native speech

11/26/2018 66

• Introduced by Gers &
Schmidhuber (2000)

• All the three gates receives
input from the previous
state and the input

• Since output can be sparse
this version has more
information for gating

– addressing and weighting

11/26/2018 67

Variants of LSTM I : Peephole connections

• Input and forget gates
has practically the
same role

• Why not to join them?

11/26/2018 68

Variants of LSTM II : Joined forget and input

11/26/2018 69

Gated Recurrent Unit (GRU)

• Another variant of LSTM

• Introduced by Kyunghyun Cho
(2014)

• There is no separate State and
Output

• Only three neural nets

• At GRU the output will not be
sparse (not gated)

• Similar performance in music
and speech signal modelling and

• Learns faster for smaller data set

11/26/2018

How GRU works?

• Concatenate ht-1 and xt

• Calculate the Input Gate

• Suppress the values to be
forgotten in ht-1
(get sparse memory vector)

• Calculate the joint Forgot and
output Gates

• Gate ht-1

• Calculate function of the Cell
Network

• Gate ෨ℎ𝑡−1

• Calculate the new output (ht)

𝑟𝑡 = 𝜎 𝑊𝑟 ℎ𝑡−1, 𝑥𝑡

𝑧𝑡 = 𝜎 𝑊𝑧 ℎ𝑡−1, 𝑥𝑡
෨ℎ𝑡 = 𝑡𝑎𝑛ℎ 𝑊𝑐 𝑟𝑡 ∗ ℎ𝑡−1, 𝑥𝑡

ℎ𝑡 = 1 − 𝑧𝑡 ∗ ℎ𝑡−1+ 𝑧𝑡 ∗ ෨ℎ𝑡

