Neural Networks

Recurrent Neural networks,
LSDM

(P-ITEEA-0011)

Akos Zarandy
Lecture 9
November 12, 2018

Administrative announces

* Next week 3rd of December at the lecture time
— Replacement test paper (P6t ZH)
— Email will be sent through Neptun

* No quizzes on Tuesday in the workclass.
— It will be done later.

— The Wednesday and Monday group will have quizzed.
* Consultation will be held in the usual consultation time and place
* Programming test is coming (18th of December)

— Please practice!

11/26/2018

Contents

 How to handle sequential signals with Neural Networks?
 Recurrent Networks

* Training

 Examples

* Vanishing gradient problem

* Long Short Term Memory (LSTM)

e LSTM versions

11/26/2018. 3

Static samples vs Data sighal flow

AlexNet could recognize 1000s of images.
ResNet could reach better then human performance.

 Though human can Butinreal life we
recognize handle Story
— Single letters — Texts .
— Single sounds » _ Speech (temporal gnaly5|s
— Single tunes — Music of sequential data)
— Single pictures — Movies

Can feed forward neural networks (perceptrons,
conv. nets) solve these problems?

DATA MEMORY

11/26/2018 4

Memory
e Qur feed-forward nets had so far

— Program memory (for the weights)

— Registers

e For store temporally due to implementation and not matematical
resasons

e Registers were not part of the networks

* After each inferences the net was reset
— All registers were deleted
— No information remained in the net after processing an input vector
— Therefore the order of a test sequence made no difference

11/26/2018 5

Recurrent networks (RNN)

Unlike traditional neural
networks, the output of the RNN

depends on the previous inputs Jirgen lives in Berlin.

_ State He speeks
RNN contains feedback
Theoretically: Feedback loop

— Directed graph with cyclic loops

From now, time has a role in
execution @\ <
y

— Time steps, delays @/
2 ——

—— output layer

input layer \ Y J (class/target)

hidden layers: “deep” if > 1
11/26/2018 6

LY

Steps towards vectorized data and parameters

* Weights
(multip|e Input value 1
arrows)
Input value 2 Output values
Input value 3
_J I _J
11/26/2018 Input Hidden Output

Layer Layer Layer

Steps towards vectorized data and parameters

Weights
(multiple
arrows)

11/26/2018

Input value 1

Input value 2

Input value 3

\m Output values

Input Hidden Output
Layer Layer Layer

Steps towards vectorized data and parameters

Weights
(multiple
arrows)

replaced

with
vectors nput Vector Output Vector
(single

arrows)

11/26/2018 Input Hidden Output
Laver Laver Laver

Steps towards vectorized data and parameters

Single arrows input vector Output Vector
indicate all

interconnections
between layers
Wj; matrix
matematically

11/26/2018 Input Hidden Output
Laver Laver Laver

Introducing feedback loop

"hy(0)7
' h1(0)
h(0) = '
| h, (0) 1 concatenation h;(0)
(1) W=y
x(1) = |
(1) 2O g

h(1) = £(h(0),x(1)) = Wxc(1)

w: | X (k+1) sized weight matrix

f() can be defined
as a more complex
function not only a
matrix vector
multiplication.

340,

Q
9

x()

h(0) =0

11

Activation function in feedback loop

e Activation function of the
hidden layers is

typically hyperbolic L
tangent

* |t avoids large positive
feedback

— Keeps the output between
-1and +1

- ?;/Icéluclg teiéﬁlodlng the loop Positive feedback in a loop: X2

_ Gain should be smaller A produces more of B which /\
than 1 in the loop! in turn produces more of A. A B
It leeds to increase beyond u
any limit. X2
11/26/2018 12

Timing of the RNN

Discrete time steps are used
Input vector sequence to apply

Signals are calculated in a node, when all inputs

exist

State machine

m_m L
h(D) = F(h),x()) ¥(D) = g(h(D) CP

x(1)
t=2 x(2)
t=3 x(3)
t=4 x(4)

11/26/2018

340,

h2) = f(h(1),x(2) y(2) = g(h(2))

h@3) = f(h(2),x3)) ¥(3) =g(h®3d))

h(4) = f(h(3),x(4)) y(4) = g(h(4)) o
X

How to calculate back propagation? h(0) =0

hQ)

x(1)
X(2)
X(3)
X(4)

Unrolling

y(@ = g(h@®) y(1)

h(0) h(1)
—

<[?(i) = f(h(i — 1), %)

X(1) X(1)

11/26/2018

\)

N

y(2) y(3) y(4)

h(2) h(3) h(4)

X(3) X(4)

14

Unrolling

* Unrolling generates an acyclic
directed graph from the original _
cyclic directed graph structure

* |t generates a final impulse
response (FIR) filter from the
original infinite impulse

response (lIR) filter lIR filters may response to FIR filters response
« Dynamic behavior ar?y fln!te.le.ngth input jco any fl.nlte I-ength
with a infinite (usually input with a final
decaying) response, due response.

to their internal loop.

11/26/2018 15

Welght matrix Sharing RNN .re-uses the same weight

matrix in every unrolled steps. (’Wq

y(@ = g(h()) = Wyh() YD) y(2) y(3) y(4)

. e_o O C
5w moae e e

> 4

: W,
Dy = p(ht - Dx@)- O
=Wj c(1)

11/26/2018 16

X(2) X(3) X(4)

Simple RNN Training Example: Predicting the next letter
@\\Vﬂ

Example:
Character-level
Language Model

Vocabulary: gne-hot

[h,e,l,0] encoding
Example training \

1 0 0 0

- - 0 1 0 0

sequence. input layer 5 5 : :
6

hello” 0 0 0 0

input chars: “p” e y i} I

117262012 http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecturel0.pdf 17

Simple RNN Training Example: Predicting the next letter ==
"7

Example: —
Character-level hi = tanh(Whhhi—1 + Wenzt)

Language Model

Hidden Iayer/ \

. 0.3 1.0 0.1 -0.3
Vocabulary: weights are hidden layer | -0.1 ~ 0.3 - 05 =" 0.9
[h.e,l,0] initialized with = & e =

random values T T I 4\,\, "
. . | -
Example training] = 3 =
sequence: input layer | 3 : : :
“hello” £ _ i g
input chars: “h” “e” “I" |

11/26/2018 18

Simple RNN Training Example: Predicting the next letter ==

target chars:

0 ¥

Example: 1.0 05 0.1 0.2

Character-level output layer | Z% e . 28;?

Language Model 4.1 1.2 -1.1 2.2
Output layer T T T FW-“Y

Vocabulary; ~ Weightsare | 0.3 1.0 01 |\ 1l -0.3

initialized with hidden layer | .0.1 ~ 0.3 -0.5 = 0.9

[h,e,l,o] random values 0.9 0.1 0.3 0.7
Example training I l I lW'Xh

sequence: input ayer | ! : ;

“hello” 0 0 0 0

input chars: “h” g0 e o b

11/26/2018

19

Simple RNN Training Example: Predicting the next letter
ﬂ%@?ﬂ

Example: sample
Character-level 0
Language Model Softmax g
Sampling —
output layer ";%
Vocabulary: 4{
[h.e.l,0] idden ayer | 04 |—
08

At test-time sample T
characters one at a time, — é
feed back to model 2

input chars: “h”

11/26/2018 20

Simple RNN Training Example: Predicting the next letter ==
"7

@\\Va

Example: SaThle f\
Character-level 0
Language Model Sorimax ¢
Sampling -~
output layer 23%

4.1
Vocabulary: T
[h,e,l,O] e er | 22
0.9
At test-time sample T
characters one at a time, a— 35
feed back to model !

input chars: “p”

o co-o0

11/26/2018 21

Simple RNN Training Example: Predicting the next letter
ﬂ%@?ﬂ

“ " “7

Example: Sample ?,\ ¢

Character-level o |||z

Language Model Sofmax Rl |2

Sampling m |

output layer %% _(:%

4.1 12

Vocabulary: T T

[h,e,l,0] | 03 10
hidden layer | -0.1 03 |-

0.9 0.1

At test-time sample P

characters one at a time, — é 2

feed back to model ot \’0

11/26/2018 22

Simple RNN Training Example: Predicting the next letter

Example: Sa
Character-level
Language Model Softmax
Sampling Backpropagation

can be started output layer
Vocabulary: using negative log

likelihood cost
[h,e,l,0]

At test-time sample
characters one at a time, —
feed back to model

input chars:

11/26/2018

function hidden layer |

“I” “o!’
t i

.03 .25 .11 .11
13 .20 A7 .02
.00 .05 .68 .08
.84 .50 .03 .79

t t t t
1.0 0.5 0.1 0.2
2.2 0.3 0.5 -1.5
-3.0 -1.0 1.9 -01
4.1 1.2 -1.1 2.2

[R e
0.3 1.0 0.1 hh| -0-3
0.1 0.3 =0 58— 0.9
0.9 0.1 -0.3 0.7

T T T TW_xh

1 0 0 0

0 1 0 0

0 0 il 1

0 0 0 0
‘h” “e” “I”

23

Back propagation through time

{%
* Assuming that the length of the W
input vector sequence is limited y(1) y(2) y@3) y(4) y(n)

* It became a feedforward neural net Q Q Q Q

* Possible to apply
back propagation

 We need multiple vector sequences

to train!
y) ¥y y@) y@ /

X1) x@2) x@) x4

X(1) x(2) x@) X(4) x(n)

Forward through entire sequence to

Backpropagation th rough time compute loss, then backward through

entire sequence to compute gradient

__— TN\

Truncated Backpropagation through time

Loss

// [T \ \\ Run forward and backward
through chunks of the

sequence instead of whole
sequence

Truncated Backpropagation through time

Loss

RN

/ [[|

Carry hidden states
forward in time forever,
but only backpropagate

N S S S TR IR O S I S N B | for some smaller

number of steps!

Image captioning example

llhat"

“straw” END

START Mstraw" “hat"

Explain Images with Multimodal Recurrent Neural Networks, Mao et al.

Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei

Show and Tell: A Neural Image Caption Generator, Vinyals et al.

Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al.
Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick

11/26/2018 29

Image captioning example
Recurrent Neural Network

“straw” “hat” END

Convolutional Neural Network

11/26/2018 30

test image

conv-128
_conv-128
maxpool

conv-ZSL

conv-256
~_maxpool

conv-512

conv-512

test image

mite

black widow
cockroach
tick

starfish

amphibian
fireboat
drilling platform

Alexnet: scored 5 best guesses

| image | <

conv-64

conv-64
max_pool

conv-128
conv-128

maxpool

conv-256
conv-256
maxpool

conv-512
conv-512
maxpool

conv-512
conv-512
maxpool

FC-4096
FC-4096

F 0
soigax

_image | <

conv-64

test image

conv-64
maxpool

conv-128

conv-128
maxpool

conv-256
conv-256
maxpool

conv-512
conv-512
maxpool

conv-512
conv-512

maxpool

FC-4096 -
FC-4096 Pl

<START>

 image @ =

conv-64

test image

conv-64
maxpool
conv-128

conv-128 straw
maxpool

conv-256 y0

conv-256
maxpool T

conv-512

conv-512

maxpool £

conv-512

maxpool T h = tanh(WXh * X + Whh * h + Wih * V)

v <START>

image |

conv-64
conv-64
maxpool

conv-128
conv-128

maxpool

conv-256
conv-256
maxpool

conv-512
conv-512
maxpool

conv-512
conv-512

maxpool

FC-4096
FC-4096

straw

y0

hO

x0
<STA
RT>

straw

<START>

sample!

test image

image |

conv-64
conv-64
maxpool

conv-128
conv-128

maxpool

conv-256
conv-256
maxpool

conv-512
conv-512
maxpool

conv-512
conv-512

maxpool

FC-4096
FC-4096

straw hat
y0 y1
hO > h1

T

T

x0
<STA
RT>

straw

<START>

test image

image |

conv-64
conv-64
maxpool

conv-128
conv-128
maxpool

conv-256
conv-256
maxpool

conv-512
conv-512
maxpool

conv-512
conv-512

maxpool

FC-4096
FC-4096

straw hat
y0 y1
hO > h1

T

T

x0
<STA
RT>

straw

hat

<START>

test image

sample!

10.00 X 5.63inch

image | -
conv-64

conv-64
maxpool

conv-128
conv-128

maxpool

conv-256
conv-256
maxpool

conv-512
conv-512
maxpool

conv-512
conv-512

maxpool

FC-4096
FC-4096

straw hat
end
y0 y1 y2
hO > h1 h2

T

T

T

x0
<STA
RT>

straw

hat

<START>

test image

 image @ =

conv-64
conv-64
maxpool

conv-128
conv-128
maxpool

conv-256
conv-256
maxpool

conv-512
conv-512
maxpool

conv-512
conv-512

maxpool

FC-4096
FC-4096

test image

\ sample

<END> token

straw hat
end
y0 y1 y2
hO > h1 h2

=> finish.

T

T

T

x0
<STA
RT>

straw

hat

<START>

Image captioning Example: Results

A cat sitting on a A cat is sitting on a tree A dog is running in the A white teddy bear sitting in
suitcase on the floor branch grass with a frisbee the grass

Two people walking on A tennis player in action Two giraffes standing in a A man riding a dirt bike on
the beach with surfboards on the court grassy field a dirt track

11/26/2018 41

lmage captioning:

EWe> " atree branch
e
\‘\

A woman is holding a
cat in her hand
A manina

baseball uniform
throwing a ball

A woman standing on a
> beach holding a surfboard

A person holding a
computer mouse on a desk

Problem

* What happens if the input sequence is too
long?

Vanishing gradient!

11/26/2018 43

Vanishing Gradient Problem
e @ @ @ O O O O

sequencies, the old
vectors has a
strongly fading —

effect in inference Layer
phase

* Intraining phase,

the stacked
gradient functions Rt O O
will be very small = . 1 5 i 2 5 =

11/26/2018 44

I——:

Practical problem of long term dependences

\

_ German
Consider a network ®) ")
which predicts the next ? ? (? C? ? (? I
word in a text AA A A AA A
— If the information needed é C;[D C’g é @g

to predict is close, it can Jurgen lives in Berlin He speeks

be successfully trained

— If required information is (h) (h) (h) &)
far, the training will be T T T T T
difficult A— A A d BN mmd
b & & & &

11/26/2018 45

RNN Gradient flow

W—> — tanh

- sta

L

— h

4

Cax |

Bengio et al, “Learning long-term dependencies with gradient descent
is difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

ht = tanh(Whhht_l + thxt)

— tanh ((Whh Whe) (h:tr;l)>
— tanh (W (h;j))

RNN Gradient flow

Backpropagation from h,

to h, , multiplies by W
(actually W, T)

- Y
W—>Q<—_> tanh
Tl
> stack —
1 A ht
9 4
X

t

Cae |

Bengio et al, “Learning long-term dependencies with gradient descent
is difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

ht = tanh(Whhht_l + th$t)

= tanh ((Whh Whe) <h;:)>

)

RNN Gradient flow

AI

Al

I——:

==

Bengio et al, “Learning long-term dependencies with gradient descent

is difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”,

ICML 2013

&

~

W—’QZ tanh

> itaTck H\» h

Computing gradient
of h, involves many
factors of W

(and repeated tanh)

.
W—’Q‘—_> tanh
L
> steIck L—» h2
L T)
x2

P

%5

Largest singular value > 1:

Exploding gradients

Largest singular value < 1:

Vanishing gradients

A[

_, Gradient clipping: Scale
gradient if its norm is too big

RNN Gradient flow

AI

e |

Bengio et al, “Learning long-term dependencies with gradient descent
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,

ICML 2013
. TN a N /)
W-—()= tanh W-—()= tanh W-—()= tanh

Computing gradient
of h, involves many
factors of W

(and repeated tanh)

N
Al

w
Al

Largest singular value > 1:
Exploding gradients

Largest singular value < 1:
Vanishing gradients

Introduction of
Long Short Term
Memory (LSTM)

— Change RNN architecture

Long Short Term Memory (LSTM)

* Was originally introduced Hochreiter &
Schmidhuber (1997)

e |dea:

11/26/2018

To be able to learn long term dependences

Collects data when the input is considered to be
relevant

Keeps it as long as it considers to be important
Technique:

e Handle the state as a memory with minor
modifications

— No matrix multiplication

— No tanh

— Apply memory handling kind signals
» datain, data out, write, enable

2% x n memory

ADRS ouT
DATA

CS

WR

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

50

Derivation of LSTM & h)

6
T
* Repeating module in r] >
Normal RNN A J A
— concatenates the input |
®)
A

and the state

®
©)

— A neural network with

tanh output and repeats @ @
the result T T
~ ™
¢ LSTM — (R —— >
@
— Uses the state as a A EACI[]B%" ® A
memory N 5 .
S _J/

— Uses 4 neural nets to

| |
control the memory &) (x) &)

* Forget, Input, W, Output
11/26/2018 51

Components of LSTM |

* All wires represents vector Output @ ﬂ

— Vector transfer — A
— Vector concatenation >
— Vector copy —l

* Neural nets with (yellow boxes)

— Multi-layer NN with tanh activation
function used for update value | tanh
calculation

— Multi-layer NN with logistic
activation function (sigmoid)
used for value selection (kind of | O
addressing)

* Pointwise operation (pink circles) |
— Pointwise multifaction %
— Pointwise addition —_—— Input

11/26/2018 52

Components of LSTM I

State of the LSTM
— This is the actual

memory,
— It can pass the previous C
values with or without Ci_1 t

— Represented by the
upper black line

— Indicated with C,

Old content can be —®—

removed value-by-value f

New content can be

added —_—
4 1 0 — > I

11/26/2018 Neural Network Pointwise Vector

Layer Operation Transfer Concatenate Copy

How LSTM works?

e Step1

— Combines input and
previous output
(concatenation)

— Selects which values to
forget
e Sort of addressing

* Done by the
“Forget Gate”

* Neural net with sigmoid

output fo=0 (Wy-lhi v, 2] + by)

11/26/2018 54

Input: “James” Updating state memory (Example) :

Forget Neural network figures out: - 3
— Analyzes the concatenated vector
— Name, Subject of a sentence, Male Ci—q
Selects which values to forget and how much
— Position and weight f:
Task:
— Update gender of the subject (forget the old L
value)
— Gender might be represented with a variable T
: presenes N fo=o0(Wi-lhior.x + by)
* c,: value proportional with the probability James
that the subject is a male ; 7 oo
. -~ c,: subject’s : forget c1 value
C; represents weather gender factor of c, after partial
— Calculate the forget factor of the gender 4 l forget
memories / N
e 0 completely get rid of it —0.5 0.1 —0.05

— — A
* 1 keep the previous value Ci-1 =102 fe = 1 Ce—1 =] 0.2
* 0 .. 1 partial forget : Not to : :
* Adressing and suppressing!!! forget c, 55

How LSTM works?

e Step 2
— Calculation of the state
update

* Done by the
“Cell Network”

* Notyet the new value, only tanh
the update value t—1

 Neural Net with tanh

— Selection of the state values
to be updates (Addressing)
* Done by the “Input Gate” lt =0 (Wi'[ht—laﬂft] + bz’)

o | ith sigmoid ~
Neural Net with sigmoi C; = tanh(We-[hi—1, 2] + bc)

11/26/2018 56

taj‘LtJ

Input: “James” Updating state memory (Example) :

Input Gate figures out:
— Analyze the concatenated vector
— Select which values to update (ENABLE!!!)

— Calculate the update weights Ci
Cell Network calculates: e
i
— The update values %
t—1
Task:
— Update gender of the subject (calculate the update xT
value) ¢
— Gender might be represented with a variable James
* ¢,:value proportional with the probability
that the gender is male bioct 7 7
L C,. Subjec :update
C,: represents weather gender estimate factor of
— Calculate the update factor of the gender value c
memories */ 1 l
* 0 not to update 0.9 0.8
* 1fully update C, =|-0.75 i, =10
e 0 .. 1 partial update : Not to :

11/26/2018 ADRESSING!!! modify c,

¥

cl update
value |

~’_
Cy =

l

0.72
0

57

How LSTM works?
Step 3 C

t—1 Ce—1
— Calculation of the state cl
update

e The old state

— With the forgotten
values in the vector

* And the state update
— With update vector

* Are added up —__ Cy = fi *Cy1 + 1 x Cy

c,: subject gender’s
, <, O 05 0. 72 0 67 elstimate value update
Ct = Ct 1 + Ct

cz: (weather) unchaged
11/26/2018 58

How LSTM works? o

e Step4
— Apply activation function to
the output

* Squeeze the values
between -1 and +1

* Done by tanh activation
function
— Selection of the new output
values (Addressing)
* Done by the “Output Gate”

* Not all the state value is
released in each step
Ot

* OQOutput Gate decides which
values are relevant in this step

J(Wo [ht—laxt] + bo)
ot * tanh (C})

g
|

11/26/2018 59

Output gate
might enables

— All values
of C,

— Fraction of
C, (sparse)
— None of C,

C,can be

sparse

11/26/2018

Output vector can be sparse

tanh(C;) =

- 0.2 7

0.98
—0.97
—0.1
0.98

0.8
0.2
0.3

—0.99
0.8

L 0.7 -

Values are
bounded

o =1 0.8

10.017
0.85
0.75

0.1
0.2

0.1
0.1
0.02
0.9

L (0.8 A

Enabling factor:

h: = o; * tanh(C;) =

Enabled values

are red

0.83

L 0.63 A

Output vector:
Enabled values are red

—0.73

0.64

0.72

Disabled values (gray)
will appear on the
output, but with
reduced values

LSTM network

e General form of an
LSTM network

9
HRERc

_J%
®

11/26/2018 61

& ® ®
1 f

>
+
—q-@-—bo
Q
EREE 2
7Y
>
>

11/26/2018 62

Gradient calculation in LSTM

Reformulating equations

s N

Ct—1 = ﬂi e 1— e Ct =
- f
e Input 7

W—> _I—> * il Forget ht 1

"'g—'_> i Output| © 33t

ht1 » stack 0 - . — h & CeII Net \9 tanh

NG 4 * t / =f xci_1+ix*g

ht = 0 * tanh(ct)

Gradient calculation in LSTM

t-1 <«

v

\

11/26/2018

Backpropagation from c, to
c,, only elementwise
multiplication by f, no matrix
multiply by W

1 o
f - o W (h‘t—1>
0 o Tt
g tanh
Ct:f *Ct_1+’l:*g

ht = o = tanh(c;)

64

Gradient calculation in LSTM

Uninterrupted gradient flow!

«
N D D
C‘_ :*:+T_>C _:C =*—>+T_>C — =*:+4—_—»C —_-»C
0 t T t 3
f f f
i i
W— _L’ * tanh W— * tanh W— _L’ * tanh
_~ I~
— 7 " stack ° l - _ , T % stack l . _ |, T % stack ° l - |-
e m/ } e m/ } (g SN W/

e Though we multiply the memory content with a smaller than 1 number
 And the W matrix is part of the memory update
e But it still preserves the content for longer time
* Asit comes from the name: It is a elongated time short term memory

11/26/2018

Achevements with LSTM networks

e Record results in natural language text compression %c'\'\/\

* Unsegmented connected handwriting recognition Q‘U’V"‘

* Natural speech recognition a7 Go g|e 2
* Smart voice assistants Translate

— Google Translate
— Amazon Alexa
— Microsoft Cortana

— Apple Quicktype

* 95.1% recognition accuracy on the Switchboard corpus, incorporating a
vocabulary of 165,000 words

— Continuous spontaneous English native speech

11/26/2018 66

Variants of LSTM | : Peephole connections

* Introduced by Gers &
Schmidhuber (2000)

* All the three gates receives
input from the previous
state and the input

* Since output can be sparse
this version has more i
information for gating

— addressing and weighting
fo =0 Wy [Cer,hi—1, 2] + by)
it = 0 (Wi [Ce—1,he—1,2¢] + b;)
11/26/2018 Ot = O (Wo-[Ct, hi_1, xt] + bo) 67

Variants of LSTM 11 : Joined forget and input

* Input and forget gates

has practically the
same role
* Why not to join them?

Ct:ft*ct—1‘|'(1_ft)*ét

11/26/2018 68

Gated Recurrent Unit (GRU)

Another variant of LSTM hy

Introduced by Kyunghyun Cho
(2014)

he—1

There is no separate State and
Output

Only three neural nets

At GRU the output will not be
sparse (not gated)

Similar performance in music
and speech signal modelling and

Learns faster for smaller data set

11/26/2018 69

How GRU works?

Concatenate h,; and X,

Calculate the Input Gate —

Suppress the values to be
forgotten in h;;
(get sparse memory vector)

Calculate the joint Forgot and
output Gates

Gate h,; ~—

Calculate function of the Cell
Network

1y = o(W,[heoq, x¢])
zy = o(Wylhe_q, x¢])
Calculate the new output (h,) he = tanh(W,.[ry * hy_q, x,])

Gate i~lt_1

11/26/2018 hy =1 —2z)*h_1+z *h,

